Andrii Zvorygin

Lyis Forestry

February 5, 2025

Table of Contents

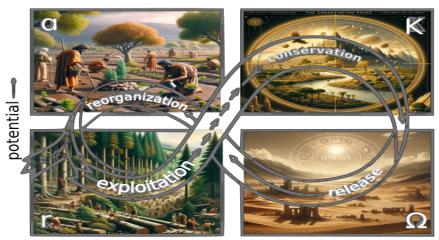
- Prayer
- ② Global Energy Context
- 3 Timelines
- 4 Planning a good future
- 6 Celestial Alignment
- 6 Potential Customers
- Discussion

Decline Inevitable

Peak Oil Projection (Fully Client Side, Asymmetric Gaussian)

If current 2P figures are close to final

Peak Oil Projection (Fully Client Side, Asymmetric Gaussian)



Or we have extra trillion barrles

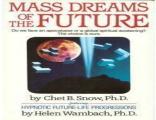
4 D > 4 AB > 4 B > 4 B >

Resilience Theory: Bronze Age Example

Collapse, Resilience, and Transformation in Complex Societies

connectedness-

Civilizations that Remember to plant trees and manage energy survive.


Prayer

- Every Day I do a prayer to help with the sustainable transition.
- May all beings awaken, ascend and align to the

New Age Sylvan Timeline

New Age Sylvan Timeline

LiRCS

That co-creates Liberated Robot Civilization Seeds

Run LLMs Locally

with Ollama

Example: Ollama

Love

Forgiving, Loving and Being Kind to One Another

Example: Christians

Food

Co-creating edible food forests where all are needs are met on site

Example: Food Forests

Create

With co-creation centers where we can make anything we can imagine EXPLORE THE GREY BRUCE MAKERS SPACE IN 3D

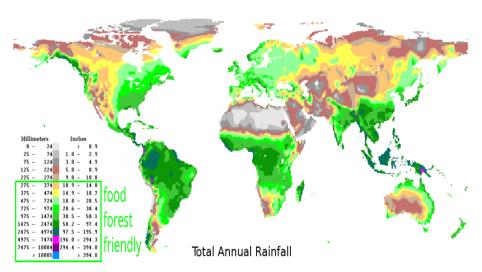
Example: Grey Bruce Makerspace

Library

Libraries of knowledge to do so

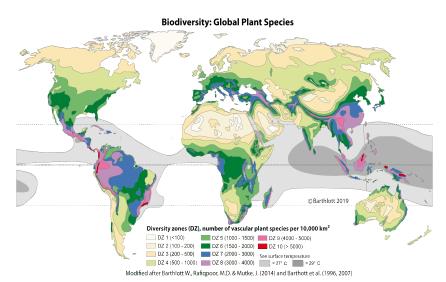
Spiritual

And spiritual practices to extend our knowledge


Example: Vril Society

Post-decline Havens

"Pockets of survivability" Factors to Consider


- Annual Rainfall
- Proximity to waterways
- Geography
- Community

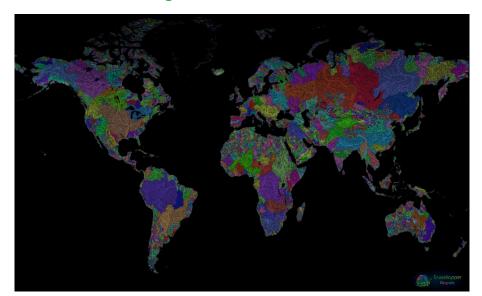
Annual Rainfall

Areas with over 250mm (10in) annual rainfall support food forests

Global Plant Biodiversity

Biodiversity increases adaptive capacity.

Example: Paradise Valley, Morocco


 $2,\!000$ year old food forest that gets 300mm annual precipitation

Example: Desert Ecosystem

In places with over 250mm-500mm annual rainfall desert forests are viable

Water Basin Trading Networks

Water transport is easiest, forming natural trading networks.

Water Basin Regions

Decide if you wish to be in large or small region.

Example: Russia, Largest Canal System

Russia's inland water transportation network spans over a 100,000km.

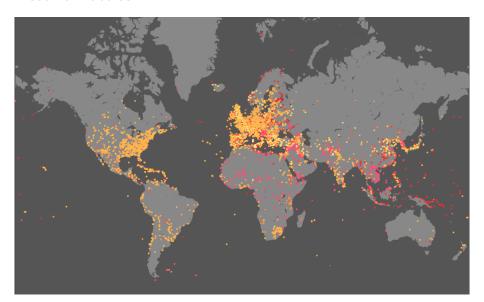
Example: China, Oldest Canal System

2,500 year old Canal System

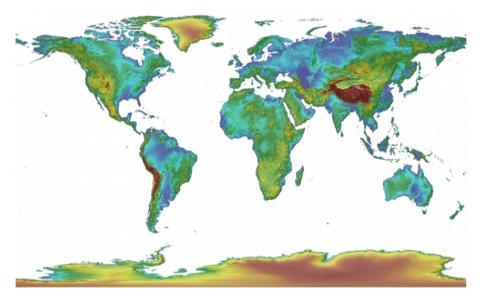
Is continually being expanded

Is being used regularly

Example: North America has potential canal system


North America has canal development potential.

Example: North America has potential canal system


North America has canal development potential.

Historic Battles

Avoid historically contentious areas.

Geography

Head for the hills.

Understanding Carrying Capacity: For Basic Essentials

Active 75kg human food ~4-5Gj/year

Active 75kg human food ~4-5Gj/year

Carrying Capacity Breakdown

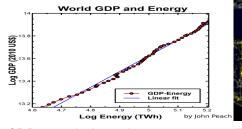
Concentric Example

Forest food production

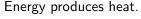
Short Rotation Coppice Firewood

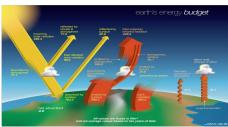
Rural Hamlet Village Settlement Example: Irish Block 24

1ha Hamlet x7 & 1ha Village Centre, 98% Agricultural, up to 419 residents


Subsidiarity Hierarchy

Subsidiarity Process:


- The hierarchy starts with the family and extends to the planetary level.
- Lower levels have autonomy within their jurisdiction.
- Each level selects leader who represent them at the next higher level.
- Higher levels provide services to lower levels and recommendations.
- A planetary leader only needs to know 100-200 people.

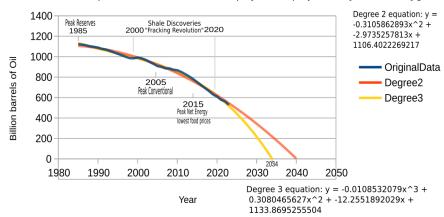

GDP/Energy Growth Dangers

GDP growth depends on energy.

5000 emperature, deg By John Peach

Earth Temperature

Heat radiance to space limited

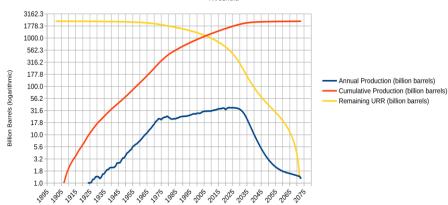

Transitioning Towards a Sustainable Future

emperature of the Sun 5778K

The Urgency of Global Oil Depletion

Oil Reserves (Discoveries-Production) 1985-2040

Data up to 2023 from John Peach, polynomial projection by Andrii Zvorygin

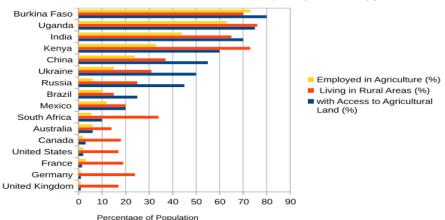


10-16 years global oil reserves remain.

If production decline is managed

Projected Oil Production Decline Curve

Simulated Production and Decline of Oil Reserves Using Asymmetric Logistic-Gaussian Model with Decline Rate Threshold

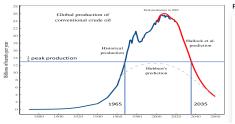

Data up to 2023 from John Peach. Projection generated 2024-11-10 by Andrii Zvorygin with GPT4o1-preview in nodejs

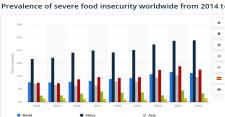
Can extend duration of oil if reduce production.

Post-Oil Transition Preparedness

Population Ability to Procure Food After Fossil Fuels

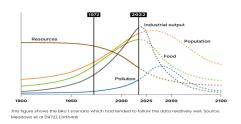
Data from ChatGPT4o with web search, compiled by Andrii Zvorygin

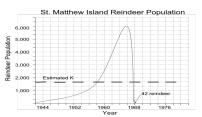

Africa most prepared, followed by Asia, NATO headed for collapse.


Oil Decline Historical

Percentage Decline (%)	Oil Price Increase (%)	Additional CPI Increase (%)	Total CPI Increase Including Baseline (%)	Food Price Increase (%)	Historical Precedent
2	25	1.0	3.0	5	2005 Katrina
3	30	1.5	3.5	6	2011 Libya War
4	40	2.0	4.0	8	1979 Iran Crisis
5	50	2.5	4.5	10	1973 Oil Crisis
6	60	3.0	5.0	12	Post-pandemic Recovery

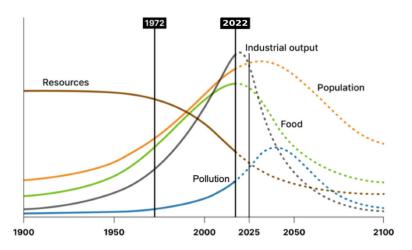
Historical oil supply decline examples and effects.


Consistent with Earlier Predictions



Hubbert Hallock

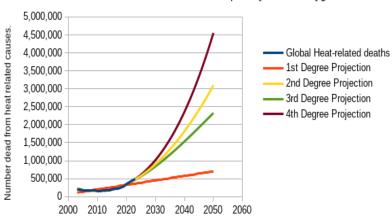
Lowest global food prices in 2015



Limits to growth study

Seneca Cliff more Probable

Limits To Growth

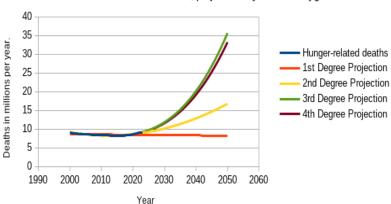


This figure shows the BAU I scenario which had tended to follow the data relatively well. Source: Meadows et al (1972), Earth4all

Heat Related Death Projections

Polynominal Projections of Global Heat Deaths

Data from GPT4o with web search. Compiled by Andrii Zvorygin.

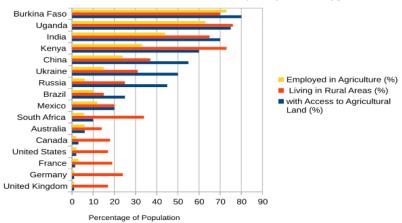


Global heat related deaths are rising. May be millions before oil collapse.

Hunger Related Death Projections

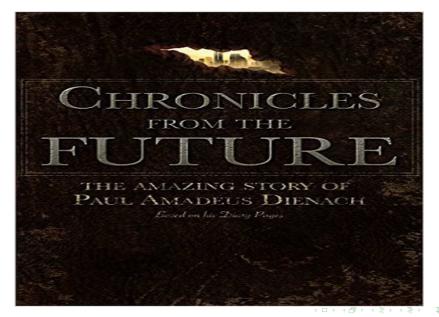
Hunger Deaths and Projections

Data from GPT4o web search, projections by Andrii Zvorygin

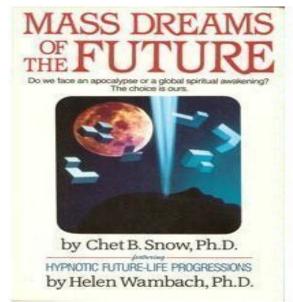


Global hunger related deaths are rising. May become tens of millions.

Agricultural Access


Population Ability to Procure Food After Fossil Fuels

Data from ChatGPT4o with web search, compiled by Andrii Zvorygin



BRICS nations have better Agricultural access, likely less famine deaths.

Chronicles From the Future by Paul Dienach

Mass Dreams of the Future Cover

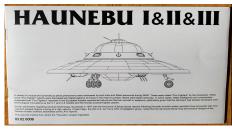
Mass Dreams of the Future Table

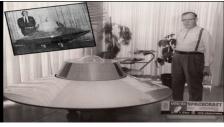
Table 7-2. 2300-2500 A.D. Groups

Categories	Male	Female	Androg.	Total	Avg. Age at Death
la In-Space	32	20	4	56	54.3 yrs
Ib Solar Space Colony	8	5	0	13	65.8 yrs
Ic Non-solar System Planet	18	20	2	40	62.2 yrs
Total Off-Earth:	58	45	6	109	59.2 yrs
II New Age	14	38	0	52	99.6 yrs
IIIa Hi-tech	18	10	8	36	56.7 yrs
IIIb Hi-tech Evolved	12	6	2	20	70.9 yrs
IVa Rustic	12	12	0	24	59.8 yrs
IVb Survivors	8	2	0	10	71.8 yrs
Total On-Earth:	64	68	10	142	74.3 yrs
General Total:	122	113	16	251	69.2 yrs
V Group Beyond 2600 A.D.:	9	2	1	12	152.1 yrs

ALON, Aluminum Oxynitride, Transparent Aluminum

ALON Molecule


ALON Dome



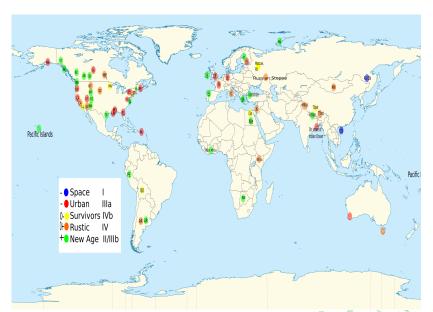
ALON Collage

ALON Star Trek

Electrogravitics Propulsion

Nazi Craft

Tesla's Otis Carr's Craft


Unidentified: For 106 minutes on March 13, people saw something like this V-shaped object flying over Arizona. UFOs? The only thing certain is that it still haunts them. 4A.

Electrogravitics 2

US Craft

Mass Dreams of the Future Map

Most Probable Future Lifestyles: Mass Dreams Study

Urban Salvage Economy

Rustic Amish annual agriculture

Indigenous hunter gatherers

Food forest communities

Orion Empire (STS: 95-100% Service-to-Self, 0-5% Service to Others):

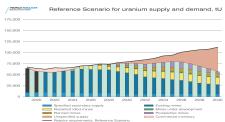
- Focus: Fear, Anger, Control
- Mission: To control and dominate, infringing on free will.
- Methods: Manipulation and

- influence to create fear and division for control.
- Aligned Historical Leaders: Genghis Khan, Himmler, Joseph Stalin, Mao Zedong
- Relevant Quote: "the crusaders of the Orion empire to carry out their self-proclaimed duty or calling to bring what they view as order and meaning to the universe" (Q'uo 2022/03/09)

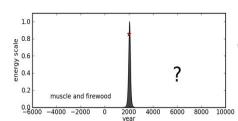
Space Pirates (Neutral: 94-50% Service-To-Self 6-50% Service-to-Others)

- Focus: War, Suffering, Chaos
- Mission: To disrupt and create chaos, preventing positive harvests.

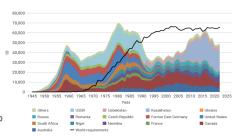
- Methods: Sowing fear and maintaining low vibrational states.
- Aligned Leader: Adolf Hitler, Winston Churchill, Richard Nixon, Prigozhin.
- Relevant Quote: "space pirates, have in mind is simply to have a continuing harvest of food, that food being fear." (Q'uo, 2005/12/19)


Confederation of Planets (STO: 49-0% Service-To-Self, 51-100% + Service-To-Others):

- Focus: Forgiveness, Love, Acceptance
- Mission: To promote love, unity, and service to others.
- Emphasis on free will and the

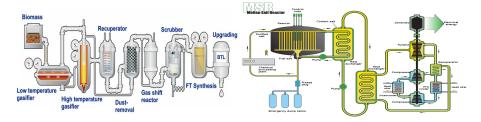

- spiritual evolution of all beings.
- Aligned Leaders: Jesus, Abraham Lincoln, Mahatma Gandhi, Franklin D. Roosevelt, Nelson Mandela.
- Relevant Quote: "We of the Confederation of Planets have come to tell a very simple story... It is a story of the power of absolute and unconditional love." (Q'uo, 2003/0206)

Nuclear Reserves Limits



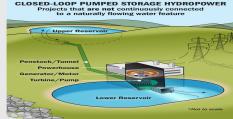
Demand outstripping supply.

Billions of years to make.


Need to be rationed to avoid blip. Production may be decline.

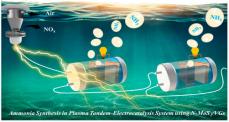
Sustainable Energy: 10-20x less Total Energy than Oil Age

Solar/Wind for Residence/Hamlet


Bio-CNG for Village from waste

FT BioGasoline for Neighbourhood Thorium Nuclear at Municipal

Sustainable Energy Storage



Battery

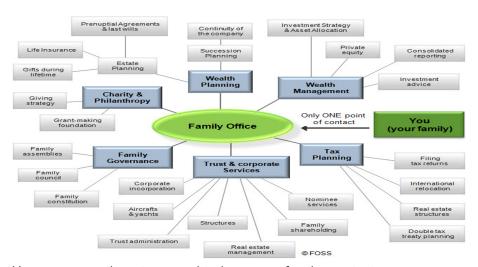
Externa Electric Electric power power inject generation Power conditioning conditioning Fuel cell Pure water storage Transmitted by Water pipelines or stored electrolyzer in containers

Pumped Storage

Hydorgen 4.6-6.6 MJ per mole of H Ammonia is viable 2.4 MJ molNH3-1

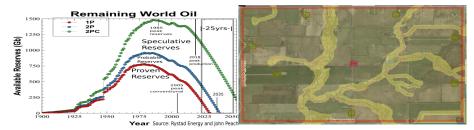
Renewable Storage Fuel Comparisons

	Energy	Energy	Average				
		Density	Energy				Conversion
Substance	(MJ/kg)	(MJ/L)	Density (MJ)	Easiest Production Method	Storage Requirements	Storage Longevity	Efficiency
Lithium Batteries	0.9	2.5	1.7	Battery assembly and recycling	Standard Battery Containment	3-10 years	N/A
	15			Gasification of biomass or waste	High Pressure (~10-20 bar) or low		40-50%
Syngas Firewood	15			Harvesting and drying wood	Normal Atmospheric Pressure	Indefinite if kept dry	40-50% N/A
arbohydrates	17				Normal Atmospheric Pressure	1-2 years	N/A
Jarbonyurales	11	10.5	13.73	Agricultural production of grains	Normal Autospheric Fressure	1-2 years	IN/A
Protein	17	10.5	13.75	and legumes	Normal Atmospheric Pressure	1-2 years	N/A
Ammonia (from Urine)	18.6	11.5	15.05	Collection and chemical treatment of urine	High Pressure (10-15 bar) at room temperature or Cryogenic (-33°C)	Indefinite with proper containment	10-20%
Ammonia (via Plasmá Tandem- Electrocatalysis)	18.6	11.5	15.05	Plasma tandem-electrocatalysis of air and water	High Pressure (10-15 bar) at room temperature or Cryogenic (-33°C)	Indefinite with proper containment	60-70%
Ethanol	30	23.5	26.75	Fermentation of sugars	Containment to prevent evaporation at room temperature	1-2 years	50-70%
CNG	53.6	9.1	31.35	Anaerobic digestion of organic matter (e.g., sewage)	High Pressure (~200-250 bar) at room temperature	Indefinite with proper containment	50-60%
Fat	37	33	35	Rendering animal fats or extracting plant oils	Normal Atmospheric Pressure (cool, dark, sealed for long-term storage)	Decades to potentially centuries	N/A
Biogasoline (via FT Process from Syngas)	46.4	34.2	40.3	Fischer-Tropsch synthesis from syngas	Containment to prevent evaporation at room temperature	3-6 months	40-60%
Biodiesel	45.5	38.6	42.05	Transesterification of vegetable oils or animal fats	Normal Atmospheric Pressure	6-12 months	80-90%
Pyrophoric Iron reduced by Syngas)	10	76	43	Reduction of iron oxides using syngas	Kept in inert atmosphere (e.g., nitrogen)	Indefinite with proper containment	30-40%
reduced by Sylligus)	- 10	70		g nga	navgery	Indefinite with proper containment, but containment systems typically viable for 5-10 years due to material embrittlement	30 1070
Hydrogen (from					High Pressure (~350-700 bar) or	and permeability	
Electrolysis)	120	8.5	64.25	Electrolysis of water	cryogenic	issues	20-30%


Firewood, Ammonia, CNG and Biodiesel seem good.

Renewable Storage Fuel Comparisons

	Energy	Energy	Average				
		Density	Energy				Conversion
Substance	(MJ/kg)	(MJ/L)	Density (MJ)	Easiest Production Method	Storage Requirements	Storage Longevity	Efficiency
Lithium Batteries	0.9	2.5	1.7	Battery assembly and recycling	Standard Battery Containment	3-10 years	N/A
	15			Gasification of biomass or waste	High Pressure (~10-20 bar) or low		40-50%
Syngas Firewood	15			Harvesting and drying wood	Normal Atmospheric Pressure	Indefinite if kept dry	40-50% N/A
arbohydrates	17				Normal Atmospheric Pressure	1-2 years	N/A
Jarbonyurales	11	10.5	13.73	Agricultural production of grains	Normal Autospheric Fressure	1-2 years	IN/A
Protein	17	10.5	13.75	and legumes	Normal Atmospheric Pressure	1-2 years	N/A
Ammonia (from Urine)	18.6	11.5	15.05	Collection and chemical treatment of urine	High Pressure (10-15 bar) at room temperature or Cryogenic (-33°C)	Indefinite with proper containment	10-20%
Ammonia (via Plasmá Tandem- Electrocatalysis)	18.6	11.5	15.05	Plasma tandem-electrocatalysis of air and water	High Pressure (10-15 bar) at room temperature or Cryogenic (-33°C)	Indefinite with proper containment	60-70%
Ethanol	30	23.5	26.75	Fermentation of sugars	Containment to prevent evaporation at room temperature	1-2 years	50-70%
CNG	53.6	9.1	31.35	Anaerobic digestion of organic matter (e.g., sewage)	High Pressure (~200-250 bar) at room temperature	Indefinite with proper containment	50-60%
Fat	37	33	35	Rendering animal fats or extracting plant oils	Normal Atmospheric Pressure (cool, dark, sealed for long-term storage)	Decades to potentially centuries	N/A
Biogasoline (via FT Process from Syngas)	46.4	34.2	40.3	Fischer-Tropsch synthesis from syngas	Containment to prevent evaporation at room temperature	3-6 months	40-60%
Biodiesel	45.5	38.6	42.05	Transesterification of vegetable oils or animal fats	Normal Atmospheric Pressure	6-12 months	80-90%
Pyrophoric Iron reduced by Syngas)	10	76	43	Reduction of iron oxides using syngas	Kept in inert atmosphere (e.g., nitrogen)	Indefinite with proper containment	30-40%
reduced by Sylligus)	- 10	70		g nga	navgery	Indefinite with proper containment, but containment systems typically viable for 5-10 years due to material embrittlement	30 1070
Hydrogen (from					High Pressure (~350-700 bar) or	and permeability	
Electrolysis)	120	8.5	64.25	Electrolysis of water	cryogenic	issues	20-30%


Firewood, Ammonia, CNG and Biodiesel seem good.

Family Offices

Have money and are interested in long term family continuity.

Discussion

Time for smooth transition limited

Sustainable Hamlets/Villages

Rustic Amish annual agriculture

Food forest communities