Eavor Loop & the Deep Geothermal Frontier

State of the Art, Depth Limits & 150–180 °C Resources 2025-07-03

Why Deep Geothermal?

A Sustainable, Always-On Energy Source for Our Community

Benefit	Description
✓ Stable, 24/7 Power	Runs year-round, day and night — reliable baseload unlike solar or wind
✓ Small Surface Footprint	Compact wellpads — ideal for urban, rural, or agricultural land use
✓ Century-Scale Lifespan	Closed-loop systems last 100–200+ years with minimal maintenance
✓ No Emissions or Fluid Loss	Fully sealed systems — no fracking, no leaks, no aquifer contamination
☑ District Heating Ready	Ideal for neighbourhood-scale heat networks alongside electricity
☑ Energy Independence	Locally sourced — reduces reliance on imports or unstable grid power

Global Geothermal Access Roadmap by Depth

Depth to Resource	Viable Land (%)	Target Temp (°C) (+ Typical Gradient)	Geological Context	First / Projected Success Year & Type
2–3 km	~5–10%	150–250°C (~60–100°C/km)	Volcanic/Rift zones: California (The Geysers), Nevada, Iceland, Kenya Rift Valley, Indonesia, Philippines	1980 – The Geysers, CA (EGS)
4–5 km	~15–20%	120–180°C (~30–45°C/km)	High heat flow basins: Insheim (Germany), Raft River (USA), Tuscany (Italy), Alsace (France), Geretsried (Germany)	2025/26 – <i>Eavor-Deep</i> , Germany (Closed-Loop)
6 km	~35–45%	120–150°C (~20–30°C/km)	Sedimentary basins, shield margins: Alberta Foothills, Southern Ontario, Central Poland, Sichuan Basin (China)	2031 – Projected Closed-Loop
7 km	~50–60%	120–150°C (~17–25°C/km)	Moderate crustal heat zones: Illinois Basin (USA), Southern Manitoba, Eastern Ukraine	2035 – Projected Closed-Loop
8 km	~65–70%	120–150°C (~15–20°C/km)	Stable cratonic interiors: Canadian Shield (ON, QC), Central Australia, U.S. Midwest, Eastern Europe	2039 – Projected Closed-Loop
9 km	~80–90%	120–150°C (~13–17°C/km)	Deep crust continental interiors: Russia (Urals), Kazakhstan, Eastern Germany, U.S. Interior Plains, Northern China	2044 – Projected Closed-Loop
10 km	~90–95%	120–150°C (~12–15°C/km)	Global near-universal access: Most of Earth excluding extreme permafrost and ultrathick shields	2050 – Projected Closed-Loop

Global Geothermal Gradient Map (by Carlos Vargas)

Historical Depth Milestones

Deep Geothermal Projects: Depth vs. Year

EGS relies on fracturing deep rock to create fluid pathways.

Proppant (like sand or ceramic beads) keeps fractures open.

But at depths >3.5–4 km, pressures exceed 100 MPa:

All known proppants crush or deform

Fractures seal shut, stopping flow

Result: Flow drops within months without costly re-fracturing.

X EGS Case Studies and the Proppant Failure Limit (~3.5–4 km)

Project	Year(s)	Depth	Outcome	Lesson
St1 Deep Heat (Finland)	2016–2023	6.4 km	➤ Failed – rapid injectivity loss	Proppants crushed at >100 MPa; unviable
Basel EGS (Switzerland)	2006–2009	5.0 km	➤ Halted – induced seismicity	Fractures self-seal + seismic risk
Soultz-sous- Forêts (France)	1995– ongoing	5.1 km	Researchrepeatedstim failures	Permeability degrades within weeks/months
Baca HDR (New Mexico, USA)	1981–1998	3.0 km	X Abandoned – injectivity drop	Even at 3 km, fractures rapidly closed

Closed-Loop Systems Are the Solution

No fracking, no proppant, no fluid loss

Can operate reliably beyond 6–8 km

Eavor-Deep NM proved tech at 5.5 km, 250+ °C

Ideal for Ontario: target 7–8.5 km for 150–180 °C

Bottom Line:

Closed-loop geothermal is the only realistic deep geothermal solution below 4 km.

How the Eavor Loop Works

- Closed-loop U-tube: two verticals joined by multilateral horizontals
- Working fluid circulates in sealed wellbore—no produced brine
- Natural thermosiphon delivers 150– 180 °C to surface
- No fracking → minimal seismic & environmental risk

What are the different kinds of Eavor-Loops?

★ Comparison of Deep Drilling Technologies for Geothermal (Target: 8.5 km, 150–180°C)

Technology	Description	Max Practical Depth	Drilling Speed	Cost/Metre	Suitable for Closed Loop?	Maturity Level	Notes
Conventional Rotary (Mud)	Standard oil & gas method using rotary drill + mud circulation	~6–7 km	Medium (~5− 10 m/hr)	<u>&</u> \$600–1500/ m	Requiresheavy casing	✓ Mature	Slows significantly at deeper depths; high casing costs at 8.5 km
Eavor/Enhanced Rotary	Closed-loop, insulated pipe + chemical seal (RockPipe™) in hard granite	✓ 8.5+ km	Fast in laterals (~12 m/hr)	<u>«</u> ~\$400–800/ m	✓ Yes	Emerging- Mature	Proven at 5.5 km in NM; scalability being tested in Geretsried
Coiled Tubing (CTD)	Uses continuous tubing; great for re-entry or shallow directional work	6 ≤3 km	Very Fast	<u>&</u> Low	Not for deep vertical	Limited	Cheap and fast, but not strong enough for deep granite drilling
Gyrotron/Plasma (Selgrade)	Uses microwave or plasma beam to vaporize rock without mechanical bit		Very Fast (theoretical)	? TBD	Could be ideal	Experimental	Still in lab stage; not yet field- tested or economically modeled
Percussion (Water Hammer)	Hammers drill head with hydraulic energy; good in hard rock	<mark>○</mark> ~5–6 km	<u>Medium</u>	💰 Variable	With custom casing	Emerging	Energy-intensive, needs robust bit design for deep closed loop
Thermal Spallation	Uses heat to break off rock flakes at surface — no bit contact	● ~1–2 km so far	? Unknown	? Unknown	Not yet proven deep	Experimental	Conceptual only; promising for brittle rock but not used at depth

X Deep Geothermal Casing Materials — Cost, Longevity & Depth Suitability

Material Type	Approx. Cost (raw)	Max Decade- Stable Temp (°C)	Longevity @ 150–180°C	Suitable for Brine/CO₂?	Yield Strength (MPa)	Max Probable Depth (km)	Notes
Carbon Steel (API P-110 / Q-125)	\$0.80–1.00 / kg	~150°C	<u>↑</u> 5–15 years	X No	758–862 MPa	~3.5–4 km	Strong but corrodes fast; not viable for deep or corrosive environments
Stainless Steel 316L	\$2-4 / kg	~250°C	✓ 80–150 years	Moderate	~170–485 MPa	~3.5–5 km	Prone to pitting in chlorides; moderate strength
13Cr Steel (with coating)	\$4-7 / kg	~280–300°C	✓ 50–80 years	Good	~620 MPa	~5–6 km	Stronger than 316L; coating needed for acidic or brine-rich zones
Duplex Stainless (2205/2507)	\$3-6 / kg	~250°C	✓ ✓ 100–200+ years	✓ Yes	620–800 MPa	~6–7 km	Excellent strength + corrosion resistance; good value
Bimetallic (Carbon + 316L/625 liner)	~\$10–20 / m lined	250–600°C	✓ ✓ 100–200+ years	✓ Yes	Composite (outer 700+ MPa)	~7–8.5 km	Best for deep, hot, corrosive wells; internal alloy layer handles stress
Nickel Alloy (Inconel 625/718)	\$25–40 / kg	~600–650°C	VV 200+ years	✓ Yes	620–1030 MPa	~8.5–10 km	Extreme conditions only; long- term resilience to temperature + pressure
Hastelloy C-276	\$30–50 / kg	~500–600°C	✓ ✓ 100–200+ years	✓ Best-in-class	~690 MPa	~7–8.5 km	Ultimate anti-corrosion choice; too costly for general use
Titanium Grade 2	\$20–30 / kg	~350–400°C	☑ 80–100 years	✓ Yes	~345 MPa	~3.5–4.5 km	Corrosion-proof but weaker and harder to weld than steel