

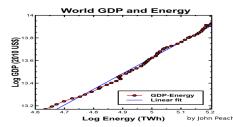
Andrii Zvorygin

Lyis Forestry

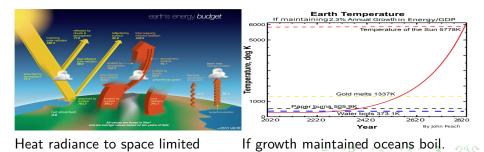
February 26, 2024

Andrii Zvorygin (Lyis Forestry) Transitioning Towards a Sustainable Future February 26,

イロト イボト イヨト イヨト

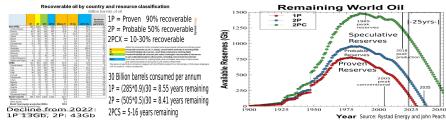

Table of Contents

- Global Energy Context
- Planning a good future
- 3 Aligning with Policy Framework
- 4 Call to Action

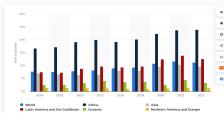

 $\exists \rightarrow$

GDP/Energy Growth Dangers

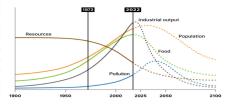
GDP growth depends on energy.


Energy produces heat.

Andrii Zvorygin (Lyis Forestry)


Transitioning Towards a Sustainable Future

The Urgency of Global Oil Depletion



8 year global oil reserves remain.

Prevalence of severe food insecurity worldwide from 2014 t

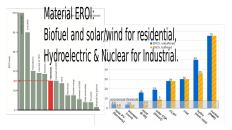
Oil reserve project low point 2035ish

This figure shows the BAU I scenario which had tended to follow the data relatively well. Source: Meadows et al (1972), Earth4all

Limits to growth indicates we in decline

Lowest global food prices in 2015

Andrii Zvorygin (Lyis Forestry)


February 26, 2024

Challenges in Transitioning to Renewables

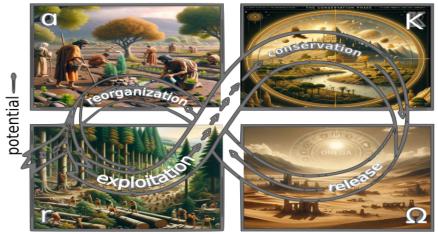
Metal	Element	Total including 28 day buffer stationary power storage (million tonnes)	Global Metal Production 2019 (million tonnes)	Years to produce metal at 2019 rates of production (assuming the 28 day buffer) (years)
Copper	Cu	6 161.1	24.20	254.6
Zinc	Zn	48.2	13.52	3.6
Magnesium Metal	Mg	0.5	1.12	0.4
Manganese	Mn	306.0	20.59	14.9
Chromium	Cr	9.2	37.50	0.2
Nickel	NI	1 251.2	2.35	532.4
Uthium	U	1 274.2	0.095	13 388.3
Cobalt	Co	292.9	0.126	2 324.6
Graphite +	c	11 466.2	2.73	4 201.2
Molybdenum	Mo	1.5	0.277	5.4
Silicon (Metallurgical)	54	67.35	3.43	19.7
Silver	AR	0.198	0.03	7.5
Platinum	Pt	0.0027	0.000190	14.1
Vanadium	v	923.96	0.096	9 622.4
Zirconium	Zr	2.61	1.34	2.0
Germanium	Ge	4.16	0.000130	32 024.3
Rare Earth Element				
Neodymium	Nd	1.14	0.024	47.8
Lanthanum	Lo	5.97	0.036	166.8
Praseodymium	Pr	0.265	0.0075	35.4
Dysprosium	Dy	0.212	0.0010	212.1
Terbium	Tb	0.023	0.00028	81.4
Hafnium	HF	0.000293	0.000066	4.4
Yttrium	Y	0.000293	0.014	0.0

Mineral supply limited.

Renewables are unreliable.

By EROI biofuel & hydro reliable.

EROI Basics, Service decline


- EROI 14, enough to pay for arts (90s)
- · EROI 12, enough to pay for healthcare (2010s)
- · EROI 9, enough to pay for a school system (2020s?)
- · EROI 7, enough to pay truck drivers, farmers (2030s?)
- EROI 5, enough to truck commodities other than fuel (2040s?)
- EROI 3, enough to truck the fuel
- · EROI 1, enough to dig a hole to look at fuel

As EROI decline, service decline,

Andrii Zvorygin (Lyis Forestry)

Resilience Theory: Bronze Age Example

Collapse, Resilience, and Transformation in Complex Societies

connectedness-

Civilizations that Remember to plant trees and manage_energy survive.

Andrii Zvorygin (Lyis Forestry)

Transitioning Towards a Sustainable Future

Most Probable Future Lifestyles: Mass Dreams Study

Urban Salvage Economy

Rustic Amish annual agriculture

Indigenous hunter gatherers

Food forest communities

Andrii Zvorygin (Lyis Forestry)

Transitioning Towards a Sustainable Future

February 26, 2024

Understanding Carrying Capacity

Active 75kg human food ~4-5Gj/year

Carrying Capacity Breakdown

Active 75kg human food ~4-5Gj/year

Concentric Example

Short Rotation Coppice Firewood

Forest food production Andrii Zvorygin (Lyis Forestry)

Transitioning Towards a Sustainable Future

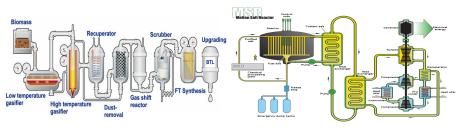
February 26, 2024

Aligning with Provincial Policy Statement

- the Ontario PPS has provisions for rural settlement areas called hamlets and villages.
- They also state that biogas facilities need to be seperated with a Minimum Distance Seperation formulae (250m-1km).
- A Hamlet is equivalent to a rural church of 60 people, which needs 72ha, or 478m radius, 6 minute walk community.
- A Village is equivalent to around 360 people, which needs 432ha, or 1.2km radius, 15 minute walk community.

Rural Hamlet Village Settlement Example: Irish Block 24

1ha Hamlet x7 & 1ha Village Centre, 98% Agricultural, up to 419 residents


Andrii Zvorygin (Lyis Forestry) Transitioning To

Transitioning Towards a Sustainable Future

Sustainable Energy Production

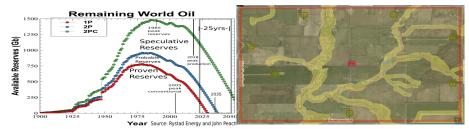
Solar/Wind for Residence/Hamlet Bio-CNG for Village from waste

FT BioGasoline for Neighbourhood Thorium Nuclear at Municipal

Andrii Zvorygin (Lyis Forestry)

Transitioning Towards a Sustainable Future

Alignments with Bruce County Plan


- Conserving Good Agricultural Land
 √ 98% Agricultural
- Enhancing Natural Environment Quality
 ✓ Food Forests, Cradle-to-Cradle Fertilizer
- Fostering Economic Prosperity through Sustainability
 ✓ Local Food, Energy & Industry
 ✓ Decentralized services
- Building Resilient Communities

 ✓ Resilient subsidiarity
 ✓ Optimal economies of scale

Moving Forward Together

- Allowing sustainable hamlets and villages in Bruce County.
- Consider radio, fiber optic, and rail county responsibilities.
- Include Carrying Capacity considerations in official plan.
- Resolution to promote sustainable hamlets and villages in PPS. i.e. Letter to Ministry of Municpal Affairs and AMO.

Discussion

Time for smooth transition limited Sustainable Hamlets/Villages

Rustic Amish annual agriculture Food forest communities

Andrii Zvorygin (Lyis Forestry)

Transitioning Towards a Sustainable Future

February 26, 2024

.4 / 14