

Black Swans, White Swans and the Purple Transition

Simon P. Michaux Associate Professor Mineral Processing & Geometallurgy

Summary

- Mapping the Green Transition
- 4 buffer sizes to manage intermittency of solar and wind power supply
- Quantity of metals needed
 - Compared to global annual mining production 2019
 - Compared to mineral reserves, resources and under sea resources
- Make batteries of something other than lithium-ion chemistry
- The commodities industry has been misunderstood
- Liquid fuel fission using thorium as the fuel
- Ammonia fueled ICE
- The Purple Transition

Table 43. Total metal quantity required to phase out fossil fuels, by different buffer for stationary power storage capacity

Metal	Total including 6 hours buffer stationary power storage	Total including 48 hours + 10% buffer stationary power storage	Total including 28 days buffer stationary power storage	Total including 12 week / 84 day buffer stationary power storage
	(million tonnes)	(million tonnes)	(million tonnes)	(million tonnes)
Steel	1 686	1 686	1 686	1 686
Aluminium	353.5	353.5	353.5	353.5
Copper	283.6	696.6	6 161	18 022
Zinc	48.17	48.17	48.17	48.17
Magnesium Metal	0.50	0.50	0.50	0.50
Manganese	18.60	38.80	305.97	885.88
Chromium	9.20	9.20	9.20	9.20
Nickel	92.23	173.67	1 251.20	4 418
Lithium	31.49	118.81	1 274.16	3 782
Cobalt	12.24	31.97	292.94	859
Graphite	262.1	1 096	11 466	36 061
Molybdenum	1.50	1.50	1.50	1.50
Silicon (Metallurgical)	67.35	67.35	67.35	67.35
Silver	0.198	0.198	0.198	0.198
Platinum	0.0027	0.0027	0.0027	0.0027
Vanadium	8.25	72.6	924.0	2 771.9
Zirconium	2.61	2.61	2.61	2.61
Germanium	4.16	4.16	4.16	4.16
Dava Fasth Flamant				
<u>Rare Earth Element</u>				
Neodymium	1.14	1.14	1.14	1.14
Lantnanum	5.97	5.97	5.97	5.97
Praseodymium	0.27	0.27	0.27	0.27
Dysprosium	0.21	0.21	0.21	0.21
Terbium	0.0228	0.0228	0.0228	0.0228
Hafnium	0.00029	0.00029	0.00029	0.00029
Yttrium	0.00029	0.00029	0.00029	0.00029

6 hours

(Larson et al 2021)

Larson, E., Greig, C., Jenkins, J., Mayfield, E., Pascale, A., Zhang, C., Drossman, J. Williams, R., Pacala, S., Socolow, R., Baik, E.J., Birdsey, R., Duke, R., Jones, R., Haley, B., Leslie, E., Paustian, K., and Swan, A., (2021): Net Zero America: Potential Pathways, Infrastructure, and Impacts, Final Report Summary, Princeton University, Princeton, NJ, 29 October 2021,

https://netzeroamerica.princeton.edu/?explorer=pathway&state=national&table=epositive&limit=200

• 48 hours +10% (Steinke et al 2012)

Steinke F., Wolfrum Ph., and Hoffmann C. (2012): Grid vs. storage in a 100 % renewable Europe. Renewable Energy, 50 (2013), 826-832

28 days (Droste-Franke 2015)

Droste-Franke, B. (2015): Review of the need for storage capacity depending on the share of renewable energies (Chap. 6). In Electrochemical energy storage for renewable sources and grid balancing. Netherlands: Elsevier

• 12 weeks (Ruhnau & Qvist 2021)

Ruhnau, O., and Qvist, S., (2021): Storage requirements in a 100% renewable electricity system: Extreme events and inter-annual variability, ZBW – Leibniz Information Centre for Economics, Kiel, Hamburg, https://www.econstor.eu/bitstream/10419/236723/1/Ruhnau-and-Qvist-2021-

Storage-requirements-in-a-100-renewable-electricity-system-EconStor.pdf

Mining production in 2019 (the last year of sensible data) **GTK**

Remember, this is for just the first generation of units.

They will wear out in **10 to 25 years**, after which they will need to be replaced

(USGS Mineral Statistics 2023)

Reported Mineral Reserves + Estimated Resources + Undersea Resources

(USGS Mineral Statistics 2023, Hein et al. 2020)

Reported Mineral Reserves + Estimated Resources + Undersea Resources

Make batteries out of something else

- Zinc
- Fluoride
- Sodium
- Magnesium
- Most of these things can be found in industrial waste
- The valuable part becomes processing and refining into something useful

A Circular Economy action

ORNL (1972): The Development Status of Molten Salt Breeder Reactors, Report ORNL - 4812, Oakland Ridge Nuclear Laboratory, United States Atomic Energy Commission (AEC)

6000 hours power generation

The MSR used in the Oak Ridge Molten salt reactor (7.4 MW) commercial pilot 1969

The LFTR (2 MW) used in Circa Whuhai, China in 2022 – now commercially selling power

Preußische Allgemeine

Zeitung für Deutschland · Das Ostpreußenblatt · Pommersche Zeitung

この記事は、2022年3月14日にプロイセンの一般新聞Preußische Allgemeine Zeitung によって公開されました。著作権表示教育目的でフェアユースを適用する。/ This article published 14 March 2022 by <u>Preußische Allgemeine Zeitung</u>, the Prussian General Newspaper. Copyright notice: applying fair use for educational purposes.

ドイツのための新聞・オストプレ					
ウセンブラッ <mark>ト・</mark> ポメラニアン新	0				

Newspaper for Germany · The Ostpreußenblatt · Pomeranian Newspaper

トリウムベースの溶融塩原子炉・ 液体燃料No.1 の責任:<u>上海応用物</u> <u>理学研究所</u> Responsible for the Thoriumbased Molten Salt Reactor-Liquid Fuel No. 1: <u>The Shanghai</u> Institute of Applied Physics

中国の溶融塩ループ実験 / China's molten salt loop experiment

https://thethoriumnetwork.com/2022/05/03/%e3%8 3%91%e3%83%bc%e3%83%95%e3%82%a7%e3%82% af%e3%83%88%e3%83%86%e3%82%af%e3%83%88 %e3%83%ad%e3%82%b8%e3%83%bc-%e3%83%90%e3%82%a4%e3%83%aa%e3%83%b3%e 3%82%ac%e3%83%ab%e8%a8%98%e4%ba%8b-%e6%97%a5%e6%9c%ac/

Liquid Fuel Thorium Molten Salt Reactor

Can also run with a U salt mix, and with some SNF

1.45 tonne of natural ThO₂ mined from approx. 280 tonne of monazite mineral sands (@0.5% grade Th) 1.34 tonne of ²³²Th in Thorium fluoride salt

10 000 GWh of electrical power is generated (365 days)

53.84 kg of contaminated fuel (LLW). Mostly medical isotopes (Xe, Ce, Sr, Zr, I, etc.) Stored for 300 years if not recycled

THE THORIUM NETWORK

Technical Memorandum TTN-TM-001 Status Review of Molten Salt Technology May 2019

Needs to be updated with data from page 73 of GIF Annual Report 2017: https://tinyurl.com/GIF-Annual-Report-2017 & https://www.gen-4.org/gif/jcms/c 44720/annual-reports

#	Company Name	Contact Details (name, number, email, linkedin)	Reactor	Fuel	Moderator	Fuel Salt	Working Fluid	Size
1	Terrestrial Energy		IMSR	LEU	Graphite	EliBe	N/S	600 MWth
2	Moltex Energy		Stable Salt Reactor	TRU	ZrF4/KF/NaF (coolant)	NaCl-MgCl2/- <u>CaCl</u> (Tube)	Steam (SuperCritical	300 MWe
3			SSR (Thermal)	(U &/ Th)	Graphite Coolant (ThF4/NaF)	NaCl-MgCl2/- <mark>CaCl</mark> (Tube)	Steam (<u>SuperCritical</u>	300 MWe
4	ThorCon Power		IMSR	LEU/Th	Graphite	BeF2-NaF	Steam (Super Criti MWe	cal) 500
5	TerraPower		MCFR	Pu	None (fast reactor)	N/A	N/S	
6	Elibe Energy		LFTR	Th-U-233	Graphite	LiF2-BeF2	CO2 (?)	250 MWe
7	Transatomic Power Corp.		TAP concept	<u>Lie</u>	Zirconium Hydrid	e	N/S	1000 MWe
8	UC Berkeley		MK1 PB-FHR	TRISO (pebble bed)	Graphite	Coolant (Li2BeF4)	Air	100 Mwe
9	Elysium Industries		MCSFR	X-U-Pu	None	NaCl-UCl3/4- PuCl3-FPCly	N/S	50-1200 MWe
10	Copenhagen Atomic		MSR	Pu-MA additive (U233)	N/S	LiF2-BeF2	N/S	50 MWe

The Thorium Network

Technical Memorandum TTN-TM-001 Status Review of Molten Salt Technology May 2019

11	Seaborg	CMSR	TRU in Tubes	Liquid	LiF2-BeF2	N/S	250/100 MWe
12	Fuji MSR	FUJI-U3	Th/U & Pu+MA	Graphite	LiF2-BeF2	Steam (SuperCritical)	200 MWe
13		MSR-FUJI	Th/U	Graphite	LiF2-BeF3	Steam (SuperCritical	1000 MWe
14	SINAP	TMSR-SF	TRU (Solid Balls)	None	LiF2-BeF2 (Coolant)	TBD	
15		TMSR-LF	Th- U(19.75%U23 5)	Graphite	LiF2-BeF2	C02	168 Mwe
16	Kurchatov Institute	MOSART	TRU		LiF-BeF2-TRUF3	N/S	2400 MWth
17	SAMOFAR /SAMOSAFER (Consortium : CNRS, JRC, TU Delft, PSI, CIRTEN)	MSFR	Th/U233 + <u>M.A</u>	None (fast reactor)	LIE-THE-233UF and LIE-THE = (enrUE -PuE). 18m3	Steam (TBC)	3 <mark>GWth</mark>
18	Kairos	KP-FHR	TRISO fuel in pebble form combined with a low- pressure fluoride salt coolant.			Fl Nitrate "Solar" salt	140 MWe
19	Qkle	SMR - LWR	HALEU			sCO2	1.5 MWe
20	Nuscale Power	SMR - LWR	U		N/A	Steam	720 MW
21	GE-Hitachi	SMR - LWR	U				

The Thorium Network

www.TheThoriumNetwork.com Page 2 of 3

P: +41 33 588 0002 <u>E</u>: +41 31 528 0349 | E: Admin@TheThoriumNetwork.com Zug, SWITZERLAND Document version 2101.0 | <u>Tinyurl.com/TTN-Tech-Memo-001</u>

Technical Memorandum TTN-TM-001 Status Review of Molten Salt Technology May 2019

22	USNC	MMR - LWR	FCM		15 MWt
23	Rolls Royce	SMR - LWR	U		

The Thorium Network

Copenhagen Atomics

- Each commercial rector is planned to be able to produce 100 MW of thermal heat, or 40 MW of electricity
- Each reactor is the size of a 40 foot shipping container
- Electricity will be sold at a projected 2 cents/kWh
- 1g of thorium or uranium produces 24 MWh of thermal energy.
 - A plant producing 1 GW electricity needs 800kg of Th₂₃₂ metal in salt form each year.
- First test of complete system to generate electricity in late 2025 to 2026
- Commercial reactors will be available for sale in 2028 (at this stage)

Test rig with a full sized reactor to pilot test the water circuit

https://www.copenhagenatomics.com/

Ammonia Fueled ICE – passenger vehicles to ships

AUTOMOTIVE HOT NEWS

Toyota CEO: "Our Ammonia Engine will be the end of EV's"

Posted by AR1 staff • October 16, 2023

Toyota has been clear about the fact that it does not believe in all-electric cars and is exploring other forms of fuel such as Ammonia.

https://www.autoracing1.com/pl/413299/toyota-ceo-our-ammonia-engine-will-be-the-end-of-evs/

The EV Black Swan is here

The sourcing of raw materials for manufacture drove this decision

The battery market will now crash (opinion)

Κ Metal fuels are metal powders that are used as energy carrier by means of a circular process – Iron powder is metal fuel with most potential

Metal fuels introduction

Metal fuels de	escription	Key advantages of metal	fuels
∄ ⊖	Metal fuels are metal powders that are oxidized to release their chemical energy	High performance	 High output temperature (up to >1500°C) High volumetric energy density Low flow rate required to generate stable flame
Ð	After oxidation, metal fuels can regain their energy by means of reduction, leading to a circular process which allows metal fuels to act as energy carrier	Compositivo transport	High direct oxidation efficiency
€	A range of metals is applicable as metal fuel, amongst others iron, silicon, magnesium and aluminium	and storage	 Possibility of reusing and retrofitting existing transport and storage infrastructures
Ð	Iron powder shows most potential for applicability as metal fuel due to its abundant occurrence and reduction potential using sustainable energy	Sustainable and safe	 No direct CO₂ emissions and low/no direct emissions of NO_x and SO_x
Ð	Metal fuels have already been used in different industries, with applications ranging from machine building to magnetic products		 Full recyclability and circularity No health or environmental hazard and no toxicity
	metal	ot	

V

Iron Power – a circular and CO2 free & low NOx energy carrier

Solution: Green Iron Power; green energy storage, transport & import complementary to H2 & NH3

Circular, renewable, no CO2, low NOx, no water consumption

Proof of Concept: Regeneration systems & Powder specifications

Iron powder is well-performing as transport carrier due to its safety, high volumetric energy density, high cycle efficiency, high infra simplicity and overall low costs

Back-up: Qualitative assessment of sustainable energy carriers for long-haul vessel transport

Carrier	Safety No environ. & health issues	Non-toxic	Non- flammable	Non- explosive	Volumetric energy density	Cycle efficiency ³⁾ [%]	Infrastructure simplicity	Overall cost assessment
Iron powder						80-90	•	€
Liquid H ₂						60-70		€€€
LOHC – H ₂ ¹⁾						70-80		€€
Ammonia - H ₂ ¹⁾						60-70		€€
Methanol – H ₂ ¹⁾						70-80		€€
Methanol						70-80		€€
Gaseous H ₂ (no pipeline) ²⁾						c. 100		€€
Ammonia						80-90		€
No issues	0-4 kWh/L	4-8 kWh/L	8-12 kWh/L (High simpli	city C Low simplici	ity \in Low costs $\in \in$ Medium costs $\in \in \notin$	E High costs	metalo

Source: IRENA, desk research, Roland Berger

Iron powder is expected to have market potential in specific use cases: process heat, district heating, electricity generation and direct production of iron

Back-up: Market potential of iron powder per direct use case (without reconversion)

	Use case	Electricity	Hydrogen	NH ₃	MeOH	lron powder	Market potential for iron powder	Key advantages of iron powder in relation to direct use applications
Direct	Synthetic fuels ¹⁾	X	\checkmark	\checkmark	\checkmark	Х		High output temperature
industry	Iron & Steel ¹⁾	\checkmark	\checkmark	X	X	\checkmark	Opportunity to produce or import DRI , potential to decarbonize steel industry	Stable flame
	Ammonia end-products ¹⁾	X	\checkmark	\checkmark	X	×		
	Methanol end-products ¹⁾	X	\checkmark	X	\checkmark	X		High oxidation efficiency
	Process heat ²⁾	X	\checkmark	\checkmark	X	~	Efficient direct oxidation of iron powder and high resulting heat	Full circularity
Controlized	Rankine cycle	n.a.	\checkmark	~	X	~	Opportunity to fuel steam engine for electricity generation	Full recyclability
energy	Combined cycle	n.a.	\checkmark	~	X	\checkmark	Opportunity to fuel steam engine as part of combined cycle turbine	No direct CO_{2} , NO_{x} and SO_{x}
Mobility	Light duty	\checkmark	\checkmark	~	~	×		
	Heavy duty	\checkmark	\checkmark	~	~	X		No toxicity or environmental and health hazards
	Rail	\checkmark	\checkmark	~	\checkmark	X		
	Inland shipping	~	\checkmark	\checkmark	~	~		
	Marine	~	\checkmark	\checkmark	~	~		
	Aviation	\checkmark	\checkmark	X	\checkmark	X		metalot
Built	District heating	~	\checkmark	~	~	\checkmark	Use of iron powder heat , especially for peak-load applications	
environm.	Local boiler/heat pump	\checkmark	~	X	X	~		
	Other ³⁾	\checkmark	Х	X	X	×		
 Expected viab As feedstock; 2) Source: Roland Be 	ple use case ~ Potentially v) Only mid- and high-grade heat; rger: European Hydrogen Backbo	i <mark>able us</mark> 3) Other	e case = Wood 2021	XN d / solar	o viabl therma	e use cas al + electric	e High market potential D Medium market potential No market pot + oil	ential

The commodities sector has been misunderstood

Our relationship between all 4 aspects & the planetary environment is changing

This is how our system is really structured

Any new system will have to have a similar structure

All of these aspects and human society functions by harvesting feedstock from the planetary environment

Simon P. Michaux Associate Professor Geometallurgy Circular Economy Solutions simon.michaux@gtk.fi gtk.fi

Kiitos & Thank you